
A Tutorial Guide to Programming PIC18, PIC24
and ATmega Microcontrollers with FlashForth.

Mechanical Engineering Report 2014/02
P. A. Jacobs

School of Mechanical and Mining Engineering
The University of Queensland.

May 13, 2014

Abstract

Modern microcontrollers provide an amazingly diverse selection of hardware peripherals,
all within a single chip. One needs to provide a small amount of supporting hardware
to power the chip and connect its peripheral devices to the signals of interest and, when
powered up, these devices need to be configured and monitored by a suitable firmware
program. These notes focus on programming the 28-pin PIC18F26K22 microcontroller
and its 40-pin PIC18F46K22 sibling in a simple hardware environment. A number of
example programs, in the Forth language, are provided to illustrate the use of some of
each microcontroller’s peripheral devices. The examples cover the very simple “flash a
LED” exercise through to driving a character-based LCD via its 4-bit parallel interface.
The set-up and use of FlashForth 5 on the PIC24FV16KM202 and AVR ATmega328P
microcontrollers is also covered.

1

CONTENTS 2

Contents

1 A selection of microcontrollers 3

2 Development boards 6
2.1 PIC18 family boards . 6
2.2 AVR and PIC24 boards . 9

3 FlashForth 13
3.1 Getting FlashForth and programming the MCU 13
3.2 Building for the PIC18F26K22 or PIC18F46K22 14
3.3 Building for the PIC24FV16KM202 . 16
3.4 Building for the ATmega328P . 16

4 Interacting with FlashForth 16

5 Introductory examples 18
5.1 Hello, World: Flash a LED on the PIC18F26K22 18
5.2 Flash a LED on the PIC24FV16KM202 . 19
5.3 Flash a LED on the ATmega328P . 20
5.4 Set the cycle duration with a variable . 20
5.5 Hello, World: Morse code . 21

6 Read and report an analog voltage 22

7 Counting button presses 23

8 Counting button presses via interrupts 24

9 Scanning a 4x3 matrix keypad 26

10 Using I2C to get temperature measurements 27

11 Making high-resolution voltage measurements 28

12 An I2C slave example 30

13 Speed of operation 35
13.1 PIC18F26K22 . 35
13.2 PIC24FV16KM202 . 37
13.3 ATmega328P . 39

14 Driving an Hitachi-44780 LCD controller 42

1 A SELECTION OF MICROCONTROLLERS 3

1 A selection of microcontrollers

Over the past couple of decades, microcontrollers have evolved to be cheap, powerful
computing devices that even Mechanical Engineers can use in building bespoke instru-
mentation for their research laboratories. Typical tasks include monitoring of analog
signals, sensing pulses and providing timing signals. Of course these things could be done
with a modern personal computer connected via USB to a commercial data acquisition
and signal processing system but there are many situations where the small, dedicated
microcontroller, requiring just a few milliamps of current, performs the task admirably
and at low cost.

Modern microcontrollers provide an amazingly diverse selection of hardware peripherals,
all within a single chip. One needs to provide a small amount of supporting hardware
to power the chip and connect its peripheral devices to the signals of interest and, when
powered up, these devices need to be configured and monitored by a suitable firmware
program. These following sections provide an introduction to the details of doing this with
an 8-bit Microchip PIC18F26K22 or PIC18F46K22 microcontroller, a 16-bit Microchip
PIC24FV16KM202 microcontroller and an 8-bit Atmel ATmega328P microcontroller, all
programmed with the FlashForth version 5 interpreter [1].

Within each family of Microchip or Atmel microcontrollers, the individual microcontroller
units (MCUs) all have the same core, i.e. same instruction set and memory organisation.
Your selection of which MCU to actually use in your project can be based on a couple
of considerations. If you are on a tight budget and will be making many units, choose
an MCU with just enough functionality, however, if convenience of development is more
important, choose one with “bells and whistles”. For this tutorial guide, we will value
convenience and so will work with microcontrollers that have:

• a nice selection of features, including a serial port, several timers and an analog-to-
digital converter. See the feature list and the block diagram of the PIC18F26K22
and PIC18F46K22 MCUs on the following pages.

• a 28-pin narrow or 40-pin DIL package, which is convenient for prototyping and has
enough I/O pins to play without needing very careful planning.

• an ability to work as 3.3V or 5V systems.

• a pinout as shown at the start of the datasheets (books) [2, 3, 4]. You will be reading
the pages of these books over and over but we include the following couple of pages
from the PIC18F22K26/PIC18F46K22 datasheet to give an overview.

• an internal arrangement that is built around an 8-bit or 16-bit data bus.

• the “Harvard architecture” with separate paths and storage areas for program in-
structions and data.

We won’t worry too much about the details of the general-purpose registers, the internal
static RAM or the machine instruction set because we will let the FlashForth interpreter
handle most of the details, however, memory layout, especially the I/O memory layout
is important for us as programmers. The peripheral devices, which are used to inferface
with the real world, are controlled and accessed via registers in the data-memory space.

1 A SELECTION OF MICROCONTROLLERS 4

 2010-2012 Microchip Technology Inc. DS41412F-page 3

PIC18(L)F2X/4XK22

High-Performance RISC CPU:

• C Compiler Optimized Architecture:
- Optional extended instruction set designed to

optimize re-entrant code
• Up to 1024 Bytes Data EEPROM
• Up to 64 Kbytes Linear Program Memory

Addressing
• Up to 3896 Bytes Linear Data Memory Address-

ing
• Up to 16 MIPS Operation
• 16-bit Wide Instructions, 8-bit Wide Data Path
• Priority Levels for Interrupts
• 31-Level, Software Accessible Hardware Stack

• 8 x 8 Single-Cycle Hardware Multiplier

Flexible Oscillator Structure:

• Precision 16 MHz Internal Oscillator Block:
- Factory calibrated to ± 1%
- Selectable frequencies, 31 kHz to 16 MHz
- 64 MHz performance available using PLL –

no external components required
• Four Crystal modes up to 64 MHz
• Two External Clock modes up to 64 MHz
• 4X Phase Lock Loop (PLL)
• Secondary Oscillator using Timer1 @ 32 kHz
• Fail-Safe Clock Monitor:

- Allows for safe shutdown if peripheral clock
stops

- Two-Speed Oscillator Start-up

Analog Features:

• Analog-to-Digital Converter (ADC) module:
- 10-bit resolution, up to 30 external channels
- Auto-acquisition capability
- Conversion available during Sleep
- Fixed Voltage Reference (FVR) channel
- Independent input multiplexing

• Analog Comparator module:
- Two rail-to-rail analog comparators
- Independent input multiplexing

• Digital-to-Analog Converter (DAC) module:

- Fixed Voltage Reference (FVR) with 1.024V,
2.048V and 4.096V output levels

- 5-bit rail-to-rail resistive DAC with positive
and negative reference selection

• Charge Time Measurement Unit (CTMU) module:
- Supports capacitive touch sensing for touch

screens and capacitive switches

Extreme Low-Power Management
PIC18(L)F2X/4XK22 with XLP:

• Sleep mode: 20 nA, typical
• Watchdog Timer: 300 nA, typical
• Timer1 Oscillator: 800 nA @ 32 kHz

• Peripheral Module Disable

Special Microcontroller Features:

• 2.3V to 5.5V Operation – PIC18FXXK22 devices
• 1.8V to 3.6V Operation – PIC18LFXXK22 devices
• Self-Programmable under Software Control

• High/Low-Voltage Detection (HLVD) module:

- Programmable 16-Level
- Interrupt on High/Low-Voltage Detection

• Programmable Brown-out Reset (BOR):
- With software enable option
- Configurable shutdown in Sleep

• Extended Watchdog Timer (WDT):
- Programmable period from 4 ms to 131s

• In-Circuit Serial Programming™ (ICSP™):
- Single-Supply 3V

• In-Circuit Debug (ICD)

Peripheral Highlights:

• Up to 35 I/O Pins plus 1 Input-Only Pin:
- High-Current Sink/Source 25 mA/25 mA
- Three programmable external interrupts
- Four programmable interrupt-on-change
- Nine programmable weak pull-ups
- Programmable slew rate

• SR Latch:
- Multiple Set/Reset input options

• Two Capture/Compare/PWM (CCP) modules
• Three Enhanced CCP (ECCP) modules:

- One, two or four PWM outputs
- Selectable polarity
- Programmable dead time
- Auto-Shutdown and Auto-Restart
- PWM steering

• Two Master Synchronous Serial Port (MSSP)
modules:
- 3-wire SPI (supports all 4 modes)
- I2C™ Master and Slave modes with address

mask

28/40/44-Pin, Low-Power, High-Performance
Microcontrollers with XLP Technology

1 A SELECTION OF MICROCONTROLLERS 5

PIC18(L)F2X/4XK22

DS41412F-page 16 2010-2012 Microchip Technology Inc.

FIGURE 1-1: PIC18(L)F2X/4XK22 FAMILY BLOCK DIAGRAM

Instruction
Decode and

Control

Data Latch

Data Memory

Address Latch

Data Address<12>

12

AccessBSR FSR0
FSR1
FSR2

inc/dec
logic

Address

4 12 4

PCH PCL

 PCLATH

8

31-Level Stack

Program Counter

PRODLPRODH

8 x 8 Multiply

8

BITOP
88

ALU<8>

20

8

8

Table Pointer<21>

inc/dec logic

21

8

Data Bus<8>

Table Latch
8

 IR

12

3

ROM Latch

PCLATU

PCU

Note 1: RE3 is only available when MCLR functionality is disabled.

2: OSC1/CLKIN and OSC2/CLKOUT are only available in select oscillator modes and when these pins are not being used as digital I/O.
Refer to Section 2.0 “Oscillator Module (With Fail-Safe Clock Monitor)” for additional information.

3: Full-Bridge operation for PIC18(L)F4XK22, half-bridge operation for PIC18(L)F2XK22.

EUSART1Comparators MSSP1
10-bit
ADC

Timer2Timer1
CTMUTimer0

CCP4

HLVD

ECCP1

BOR Data
EEPROM

W

Instruction Bus <16>

STKPTR Bank

8

State machine
control signals

Decode

8

8
Power-up

Timer

Oscillator
Start-up Timer

Power-on
Reset

Watchdog
Timer

OSC1(2)

OSC2(2)

Brown-out
Reset

Internal
Oscillator

Fail-Safe
Clock Monitor

Precision

Reference
Band GapMCLR(1)

Block

LFINTOSC
Oscillator

16 MHz
Oscillator

Single-Supply
Programming

In-Circuit
Debugger

SOSCO

SOSCI

FVR

FVR
FVR

DAC

Address Latch

Program Memory
(8/16/32/64 Kbytes)

Data Latch

PORTA

RA0:RA7

PORTB

RB0:RB7

PORTC

RC0:RC7

PORTD

RD0:RD7

Timer4
Timer6

Timer3
Timer5

SR Latch
EUSART2MSSP2CCP5

ECCP2(3)

C1/C2 ECCP3

PORTE

RE0:RE2

RE3(1)

DAC

2 DEVELOPMENT BOARDS 6

2 Development boards

This tutorial is based around simple support hardware for each of the microcontrollers.
If you don’t want to do your own soldering, there are easy-to-buy demonstration boards
available as a convenient way to get your hardware up and going. If you are a student of
mechatroncis, however, you must eventually design and build your own hardware. The
strip-board versions are aimed at you.

2.1 PIC18 family boards

Here is a picture of PICDEM 2 PLUS with PIC18F46K22-I/P in the 40-pin socket (U1)
and running the LCD, as described in Section 14. We’ll make use of the serial RS-232
interface (MAX232ACPA, U3) to both program Forth application and to communicate
with running applications. Other conveniences include on-board LEDs, switches, a po-
tentiometer (RA0) and I2C devices, such as a TC74 temperature sensor (U5), just below
the MCU and a 24LC256 serial EEPROM (U4). Initial programming of the FlashForth
system into the MCU can be done via jack J5 (labelled ICD in the lower left of the
photograph) with a Microchip MPLAB-ICD3, PICkit3, or similar device programmer.

If you want a homebrew system, you can build a minimal system on strip-board that
works well. One of the nice things about such a strip-board construction is that you
can easily continue construction of your bespoke project on the board and, with careful
construction, your prototype can provide years of reliable service.

2 DEVELOPMENT BOARDS 7

Here is a detailed view of the home-made demo board with PIC18F26K22 in place. This
board is suitable for the exercises in this guide. A separate regulator board is to the
left and a current-limited supply provides the input power. The board is simple to make
by hand, with header pins for the reset switch and connections to the LEDs. The 4-pin
header in the foreground provides an I2C connection. The ICSP header is only needed to
program FlashForth into the MCU, initially. All communication with the host PC is then
via the TTL-level serial header (labelled FTDI-232) at the right. Beyond the minimum
required to get the microcontroller to function, we have current-limit resistors and header
pins on most of the MCU’s I/O pins. This arrangement is convenient for exercises such
as interfacing to the 4x3 matrix keypad (Section 9).

The schematic diagram of this home-brew board is shown on the following page. Note that
there is no crystal oscillator on the board; the internal oscillator is sufficiently accurate
for asynchronous serial port communication. Note, also, the 1k resistors in the TX and
RX nets. These limit the current going through the microcontroller pin-protection diodes
in the situation where the microcontroller board is unpowered and the FTDI-232 cable is
still plugged in to your PC. This will happen at some point and, without the current-limit
resistors, the FTDI cable will power the microcontroller, probably poorly.

2 DEVELOPMENT BOARDS 8

F
IL

E
:

R
E

V
IS

IO
N

:

D
R

A
W

N
 B

Y
:

P
A

G
E

O
F

T
IT

L
E

2 4 61 3 5

C
O

N
N

_
IC

S
P

+5V

Vss

!M
C

L
R

V
D

D

V
S

S

D
A

T
A

C
L
K

N
C

1N4004

1
k

1
k

p
ic

1
8
f2

6
k
2
2
 n

o
t−

q
u
it
e
 m

in
im

a
l
d
e
m

o
 b

o
a
rd

P
e
te

r
J
a
c
o
b
s

1
0
0
n

4
7
0

V
s
s

1
1

+
5

V

V
s
s

Vss

4
7
0

4
7
0

R
B

1

R
B

0

21

C
O

N
N

_
R

E
S

E
T

32 41

C
O

N
N

_
I2

C

5k6

5k6

Vss

+
5

V

1
0

Vss

S
D

A

S
C

L

+
V

G
N

D

G
N

D

H
O

S
T

_
T

X

H
O

S
T

_
R

X

3
3
0

3
3
0

3
3
0

3
3
0

3
3
0

3
3
0

3
3
0

3
3
0

3
3
0

R
B

5

R
B

4

R
B

3

R
B

2

R
A

1

R
A

0

R
A

2

R
A

3

R
A

4

R
A

5

R
C

0

R
C

1

R
C

2

3
3
0

3
3
0

3
3
0

3
3
0

3
3
0

3
3
0

3
0
−

A
p
r−

2
0
1
4

3
3
0

M
C

U
_
R

X

S
D

A
S

C
L

P
IC

1
8
F

2
6
K

2
2

!M
C

L
R

/V
P

P
/R

E
3

1

R
A

0
/A

N
0

2

R
A

1
/A

N
1

3

R
A

2
/A

N
2

4

R
A

3
/A

N
3

5

R
A

4
6

R
A

5
/A

N
4

7

V
S

S
8

O
S

C
1
/R

A
7

9

O
S

C
2
/R

A
6

1
0

R
C

0
1

1

R
C

1
1

2

R
C

2
1

3

R
C

3
/S

C
L

1
4

R
C

4
/S

D
A

1
5

R
C

5
1

6

R
C

6
/T

X
1

7

R
C

7
/R

X
1

8

V
S

S
1

9

V
D

D
2

0

R
B

0
2

1

R
B

1
2

2

R
B

2
2

3

R
B

3
2

4

R
B

4
2

5

R
B

5
2

6

R
B

6
/P

G
C

2
7

R
B

7
/P

G
D

2
8

U
?

S
D

A

S
C

L

M
C

U
_
R

X M
C

U
_
T

X

2 4 61 3 5

F
T

D
I−

2
3
2

R
C

5

M
C

U
_
T

X

N
C

N
C

N
C

3
3
0

R
A

7

3
3
0

R
A

6

R
B

6
/P

G
C

R
B

7
/P

G
D

R
B

6
/P

G
C

R
B

7
/P

G
D

21

C
O

N
N

_
P

O
W

E
R

V
s
s

+
5

V

1 2

2
u
2

2 DEVELOPMENT BOARDS 9

2.2 AVR and PIC24 boards

The Eleven from Freetronics, shown in the left half of the following photograph, is an
Arduino-compatible board carrying an ATmega328P microcontroller. This is a conve-
nient piece of hardware with many prototype-friendly boards available to plug into the
headers around the periphery of the board. Although these boards come with the Arduino
bootloader preprogrammed into the ATmega328 microcontroller, the standard AVR 6-pin
programming header on the right-hand end of the board (in the photo) can be used to
reprogram the microcontroller with the FlashForth interpreter. Power and serial port
access is through the USB connector at the left.

If you want an almost-no-solder option for prototyping with the PIC24FV16KM202, Mi-
crochip provide the Microstick 5V for PIC24K-series. As shown in the following photo-
graph, this is convenient in that it includes a programmer on-board and can be plugged
into a bread-board. The power supply and flash programming access is provided through
the USB connector on the left of the board while the serial port connection is via the
6-pin connector on the right-end of the board.

2 DEVELOPMENT BOARDS 10

Building a minimal board, by hand, for any of these processors is fairly easy and strip-
board versions for each is shown in the following photograph. The left-hand board is for
the PIC18F26K22, before all of the extra protection resistors were added. In this state,
FlashForth can already be used on this board for nearly all of the exercises in the following
sections. Schematic diagrams for the PIC24 and AVR microcontrollers are shown on the
following pages.

Each of the boards has headers for (1) power, (2) in-circuit serial programming, (3) I2C
communication and (4) TTL-level-232 serial communication. The ATmega328 board on
the right has a few more protection resistors installed and has an 16 MHz crystal because
serial-port communication was found to be unreliable using the internal oscillator.

2 DEVELOPMENT BOARDS 11

F
IL

E
:

R
E

V
IS

IO
N

:

D
R

A
W

N
 B

Y
:

P
A

G
E

O
F

T
IT

L
E

2 4 61 3 5

C
O

N
N

_
IC

S
P

+5V

1N4004

1
k

1
k

A
V

R
 A

T
m

e
g
a
3
2
8
 n

o
t−

q
u
it
e
 m

in
im

a
l
d
e
m

o
 b

o
a
rd

P
e
te

r
J
a
c
o
b
s

1
0
0
n

4
7
0

V
s
s

1
1

+5V

Vss

Vss

4
7
0

4
7
0

P
D

2

P
D

3

21

C
O

N
N

_
R

E
S

E
T

32 41

C
O

N
N

_
I2

C

5k6

5k6

Vss

+
5

V

1
0

Vss

S
D

A

S
C

L

+
V

G
N

D

G
N

D

H
O

S
T

_
T

X

H
O

S
T

_
R

X

3
0
−

A
p
r−

2
0
1
4

M
C

U
_
R

X

S
D

A

S
C

L

S
D

A

S
C

L

M
C

U
_
R

X

M
C

U
_
T

X

2 4 61 3 5

F
T

D
I−

2
3
2

M
C

U
_
T

X

N
C

N
C

N
C

M
IS

O

M
O

S
I

S
C

K

M
O

S
I

21

C
O

N
N

_
P

O
W

E
R

V
s
s

+
5

V

1 2

2
u
2

!R
E

S
E

T

!R
E

S
E

T

N
C

N
C

N
C

N
C

N
C

N
C

N
C

1
0
R

+
5

V

V
s
s

1
0
0
n

N
C

N
C

A
T

m
e
g
a
3
2
8

P
C

6
 (

!R
E

S
E

T
)

1

P
D

0
 (

R
X

D
)

2

P
D

1
 (

T
X

D
)

3

P
D

2
4

P
D

3
5

P
D

4
6

V
C

C
7

G
N

D
8

P
B

6
 (

X
T

A
L
1
)

9

P
B

7
 (

X
T

A
L
2
)

1
0

P
D

5
1

1

P
D

6
 (

A
IN

0
)

1
2

P
D

7
 (

A
IN

1
)

1
3

P
B

0
1

4
P

B
1

1
5

(!
S

S
)

P
B

2
1

6

(M
O

S
I)

 P
B

3
1

7

(M
IS

O
)

P
B

4
1

8

(S
C

K
)

P
B

5
1

9

A
V

C
C

2
0

A
R

E
F

2
1

G
N

D
2

2

P
C

0
2

3

P
C

1
2

4

P
C

2
2

5

P
C

3
2

6

(S
D

A
)

P
C

4
2

7

(S
C

L
)

P
C

5
2

8

U
1

4
7
0

P
D

4

V
s
s

M
IS

O

S
C

K

1
0
0
n

N
C

U2

1
6
M

H
z

1
5
p
F

1
5
p
F

2 DEVELOPMENT BOARDS 12

F
IL

E
:

R
E

V
IS

IO
N

:

D
R

A
W

N
 B

Y
:

P
A

G
E

O
F

T
IT

L
E

2 4 61 3 5

C
O

N
N

_
IC

S
P

+5V

Vss

!M
C

L
R

V
D

D

V
S

S

D
A

T
A

C
L
K

N
C

1N4004

1
k

1
k

P
IC

2
4
F

V
1
6
K

M
2
0
2
 n

o
t−

q
u
it
e
 m

in
im

a
l
d
e
m

o
 b

o
a
rd

P
e
te

r
J
a
c
o
b
s

1
0
0
n

4
7
0

V
s
s

1
1

+
5

V

V
s
s

Vss

4
7
0

4
7
0

R
B

1
5

R
B

1
4

21

C
O

N
N

_
R

E
S

E
T

32 41

C
O

N
N

_
I2

C

5k6

5k6

Vss

+
5

V

1
0

Vss

S
D

A

S
C

L

+
V

G
N

D

G
N

D

H
O

S
T

_
T

X

H
O

S
T

_
R

X

3
3
0

3
3
0

3
0
−

A
p
r−

2
0
1
4

M
C

U
_
R

X

S
D

A

S
C

L
S

D
A

S
C

L

M
C

U
_
R

X

M
C

U
_
T

X

2 4 61 3 5

F
T

D
I−

2
3
2

M
C

U
_
T

X

N
C

N
C

N
C

R
B

6
/P

G
C

R
B

7
/P

G
D

R
B

6
/P

G
C

R
B

7
/P

G
D

21

C
O

N
N

_
P

O
W

E
R

V
s
s

+
5

V

1 2

2
u
2

P
IC

2
4
F

V
1
6
K

M
2
0
2

!M
C

L
R

/R
A

5
1

R
A

0
2

R
A

1
3

R
B

0
/P

G
E

D
1

4

R
B

1
/P

G
E

C
1

5

R
B

2
/U

1
R

X
6

R
B

3
7

V
S

S
8

R
A

2
/O

S
C

I
9

R
A

3
/O

S
C

O
1

0

R
B

4
1

1

R
A

4
1

2

V
D

D
1

3

R
B

5
1

4
R

B
6

1
5

R
B

7
/U

1
T

X
1

6

R
B

8
/S

C
L
1

1
7

R
B

9
/S

D
A

1
1

8

R
A

7
1

9

V
C

A
P

2
0

R
B

1
0
/P

G
E

D
2

2
1

R
B

1
1
/P

G
E

C
2

2
2

R
B

1
2

2
3

R
B

1
3

2
4

R
B

1
4

2
5

R
B

1
5

2
6

V
S

S
2

7

V
D

D
2

8

U
1

!M
C

L
R

!M
C

L
R

N
C

N
C

N
C

N
C

N
C

N
C

N
C

N
C

N
C

N
C

N
C

1
2

1
0
u
F

1
0
R

+
5

V

V
s
s

1
0
0
n

Vss

N
C

N
C

10k

+
5

V

N
C

3 FLASHFORTH 13

3 FlashForth

Forth is a word-based language, in which the data stack is made available to the pro-
grammer for temporary storage and the passing of parameters to functions. Everything
is either a number or a word. Numbers are pushed onto the stack and words invoke func-
tions. The language is simple enough to parse that full interactive Forth systems may
be implemented with few (memory) resources. Forth systems may be implemented in a
few kilobytes of program memory and a few hundred bytes of data memory such that it
is feasible to provide the convenience of a fully interactive program development on very
small microcontrollers.

The classic beginners book by Brodie [5] is available online1, as is Pelc’s more recent
book [6]2. A more detailed reference is published by Forth Inc [7]. These books are biased
toward Forth running on a personal computer rather than on a microcontroller, however,
they are a good place to start your reading. For an introductory document that is specific
to FlashForth, see the companion report [8].

FlashForth [1] for the PIC18, PIC24 and ATmega families of microcontrollers is a full
interpreter and compiler that runs entirely on the microcontroller. It is a 16-bit Forth with
a byte-addressable memory space. Even though there are distinct memory types (RAM,
EEPROM and Flash) and separate busses for data and program memory in these Harvard-
architecture microcontrollers, FlashForth unifies them into a single 64kB memory.

Above working in assembler, FlashForth does use some resources, both memory and
compute cycles, but it provides such a nice, interactive environment that these costs are
usually returned in convenience while tinkering with your hardware. Forth programs are
very compact so you will have less code to maintain in the long run. The interpreter
can also be available to the end user of your instrument, possibly for making parameter
adjustments or for making the hardware versatile by having a collection of application
functions present simultaneously in the firmware, with the user selecting the required
function as they wish.

3.1 Getting FlashForth and programming the MCU

FlashForth is written in assembler, with one program source for each of the microcontroller
families and a number of Forth text files to augment the core interpreter. The source code
can be downloaded from SourceForge at the URL
http://sourceforge.net/projects/flashforth/

There, you will see that you can get a packaged release or you can clone the git repository.

To build from this source, you will need to start up your integrated development environ-
ment (be it MPLAB, MPLAB-X or AVR Studio), open the program source and config
files in this IDE and edit the config file(s) match your selection of oscillator. There are
other options to customize but the choice of oscillator is the main one. The machine
code can then be assembled and programmed into your microcontroller with a suitable
device programmer (PICkit3, ICD3, STK500, AVRISP MkII, ...). Once programmed with

1http://home.iae.nl/users/mhx/sf.html and http://www.forth.com/starting-forth/
2http://www.mpeforth.com/

3 FLASHFORTH 14

FlashForth, and mounted in a board that provides power and serial communications as
described in the previous section, you will be ready to interact with FlashForth via a
serial terminal.

3.2 Building for the PIC18F26K22 or PIC18F46K22

For our minimal system with either the PIC18F26K22 or PIC18F46K22 microcontroller,
we elect to use the internal (16 MHz) oscillator multiplied by 4 by the PLL. To make the
build process a little easier, a set of MPLAB-X projects is provided in the PIC18 directory of
the FlashForth source distribution. We select the FF_UART.X project to build our Flash-
Forth program that will use the microcontroller’s UART serial port as the OPERATOR
communications channel.

To build the actual machine code that will be programmed into the flash memory of the mi-
crocontroller, it is sufficient to assemble the principal source file ff-pic18.asm along with
the configuration (or header) files pic18f-main.cfg, pic18fxxxx.cfg, p18f2x4xk22.cfg,
and use the linker script FF_0000.lkr. The source file and config files can be found in
the directory PIC18/src/, while the linker file is in PIC18/lkr/. There may be other
configuration files already added to the project but you can ignore them.

We edited the processor-specific config file, p18f2x4xk22.cfg, writing “PLLCFG = ON” to
have the PLL enabled (giving FOSC = 64 MHz), enable the watchdog timer with a 1:32768
postscale (WDTPS = 32768), and enable the external reset capability (MCLRE = EXTMCLR).
Being able to reset the microcontroller by bringing the MCLR pin low is something that we
find convenient when tinkering with new hardware.

We needed to edit the pic18f-main.cfg file only to set the system clock speed as
constant clock=d’64000000’. There are many other options for customizing the Flash-
Forth program in this file, however, the default parameters are fine for the first build of
our minimal system. To see your options for all of the configuration bits for your specific
microcontroller, it is convenient to open the MPLAB-X view from the main menu: Window
→ PIC Memory Views → Configuration Bits.

With the specific microcontroller selected for the project, the config file pic18fxxxx.cfg

will automatically select the appropriate MPLAB include file for the microcontroller, be
it p18f26k22.inc for the 28-pin chip on the home-made board or p18f46k22.inc for the
40-pin chip on the PICDEM 2 PLUS board. If the build process complains of not being
able to find the MCU-specific include file, you may need to adjust the case-sensitivity
of the assembler. This check box can be found in the Project Properties dialog, under
“General Options” for the mpasmx assembler, as shown in the following screen shot.

3 FLASHFORTH 15

The following image shows the result of building in Microchip’s MPLAB X IDE. The
lower left frame in the MPLAB-X window shows the MCU resources used. With 423
bytes of SRAM used (another 3473 free) and 8808 bytes of program memory used (56728
free), For the PIC18F26K22 MCU, FlashForth occupies only about one-eighth of the mi-
crocontroller’s memory. The rest is available for the your application. For more details
on the SRAM memory map, see “The Hitchhiker’s Guide to FlashForth on PIC18 Micro-
controllers”. There, Mikael Nordman has provided a memory map that shows how the
SRAM memory is allocated within the FlashForth system.

The final step is to program the FlashForth machine code into the flash memory of the
microcontroller, using whatever device programmer you happen to have plugged into your
development system. The Dashboard view in the screen shot above shows that we have
seleted to use of the MPLAB ICD3.

4 INTERACTING WITH FLASHFORTH 16

3.3 Building for the PIC24FV16KM202

Building for the 16-bit PIC24 family is similar process. This time look for the source
code files in the PIC24/ subdirectory. There are fewer config files but you may need
to customize the closest one for your particular processor. Here is the required text in
the p24f16ka_config.inc file for our PIC24FV16KM202-I/SP microcontroller using it’s
internal 8 MHz oscillator and installed on the 5V Microstick starter board:

.ifdef __24FV16KM202

.print "Customize p24f16ka_config.inc for PIC24FV16KM202"

;;; Below is the setting for max amount of ram for PIC24FV16KM202

.equ FLASH_SIZE, 0x2C00 ; Flash size in bytes without the high byte

; See program memory size in the device datasheet.

.equ RAM_SIZE, 0x0800 ; Ram size in bytes

.equ EEPROM_SIZE, 0x0200 ; Eeprom size

config FOSCSEL, FNOSC_FRCDIV & SOSCSRC_DIG & LPRCSEL_LP & IESO_OFF

config FOSC, POSCMOD_NONE & OSCIOFNC_IO & POSCFREQ_MS & SOSCSEL_SOSCLP & FCKSM_CSDCMD

config FWDT, FWDTEN_ON

config FPOR, BOREN_BOR3 & RETCFG_OFF & PWRTEN_ON & I2C1SEL_PRI & BORV_V18 & MCLRE_ON

; ICS_PGx2 for strip-board example

; ICS_PGx1 for 5V Microstick for PIC24 K-series

config FICD, ICS_PGx1

.equ FREQ_OSC, (8000000) ;Clock (Crystal)frequency (Hz)

.endif

Once programmed, FlashForth uses 646 of the microcontroller’s 2048 bytes of SRAM and
4431 of the MCU’s 5632 words of Flash memory. This leaves 1402 bytes or SRAM and
1201 words of Flash program memory for your Forth application program. Although this
appears to be a lot less than that available in the PIC18F26K22 MCU, this 16-bit MCU
has lots of interesting hardware and 1201 words can hold a lot of Forth instructions.

3.4 Building for the ATmega328P

Assembling the FlashForth program within the AVR Studio IDE is fairly simple but Mike
Nordman has made life even simpler for users of Arduino-like hardware by providing a
prebuilt .hex file that can be programmed into the ATmega328P. Here is the command
for doing so with avrdude on a Linux PC.

$ sudo avrdude -p m328p -B 8.0 -c jtag3isp -P usb -e \

-U efuse:w:0xff:m \

-U hfuse:w:0xda:m \

-U lfuse:w:0xff:m \

-U flash:w:ff_uno.hex:i

The fuses are set to use the 16 MHz crystal on the Arduino-like board.

4 Interacting with FlashForth

Principally, interaction with the programmed MCU is via the serial port. Settings are
38400 baud 8-bit, no parity, 1 stop bit, with software (Xon/Xoff) flow control.

4 INTERACTING WITH FLASHFORTH 17

On a linux machine the cutecom terminal program is very convenient. It has a line-
oriented input that doesn’t send the text to the MCU until you press the enter key. This
allows for editing of the line before committing it to the MCU and convenient recall of
previous lines. GtkTerm is available as more conventional terminal program. The following
images shows the GtkTerm window just afer sending the content of the flash-led.txt

file to the PIC18F26K22. The device name of /dev/ttyUSB0 refers to the USB-to-serial
interface that was plugged one of the PC’s USB ports. It is convenient to start GtkTerm
with the command

$ sudo gtkterm

and then adjust the communication settings via the Configuration → Port menu item
and its associated dialog window.

There is also a send-file capability and, importantly, the capability to set the period be-
tween lines of text that are sent to the serial port so as to not overwhelm the FlashForth
MCU. Although USB-to-serial interfaces usually implement software Xon-Xoff handshak-
ing, my experience of using them with a minimal 3-wire connection (GND, RX and TX)
has been variable. When sending large files, an end-of-line delay of a few tens of mil-
liseconds has usually been found adequate, however, there have been times that a file
would not successfully load until the end-of-line pause was increased to 300 milliseconds.
For GtkTerm, this setting is under the Advanced Configuration Options in the port
configuration dialog, as shown below. This end-of-line delay makes the transfer of large
files slow, however, the text still scrolls past quickly but is now at a pace where it is
possible to follow the dialog and know how well the compilation is going. Building your
application code incrementally, with small files, is a good thing.

5 INTRODUCTORY EXAMPLES 18

5 Introductory examples

We begin with examples that demonstrate a small number of features of the MCU or of
FlashForth. Our interest will primarily be in driving the various peripherals of the MCU
rather than doing arithmetic or dealing with abstract data.

5.1 Hello, World: Flash a LED on the PIC18F26K22

The microcontroller version of the “Hello, World” program is typically a program that
flashes a single LED. It makes use of a digital input-output pin via the registers that
control the IO port. The datasheet [2] has a very readable introduction to the IO ports.
Please read it.

1 -flash -led

2 marker -flash -led

3 $ff8a constant latb

4 $ff93 constant trisb

5 : init 1 trisb mclr ; \ want RB0 as output

6 : do_output latb c@ 1 xor latb c! ; \ toggle RB0

7 : wait #500 ms ;

8 : main init begin do_output wait again ;

9 main

Notes on this program:

• If the word -flash-led has been previously defined with the word marker, line 1
resets the dictionary state and continues interpreting the file, else the interpreter
signals that it can’t find the word and continues interpreting the file anyway.

• Line 2 records the state of the dictionary and defines the word -flash-led so that
we can reset the dictionary to it’s state before the code was compiled, simply by
executing the word -flash-led.

• Lines 3 and 4 define convenient names for the addresses of the file registers that
control IO-port B. Note the literal hexadecimal notation with the $ character. In
the PIC18F family, the special function registers for interacting with the MCU
hardware appear near the top of the 64k FlashForth memory space.

• Line 5 is a colon definition for the word init that sets up the peripheral hardware.
Here, we set pin RB0 as output. The actual command that does the setting is
mclr, which takes a bit-mask (00000001) and a register address ($ff93) and then
clears the register’s bits that have been set in the mask. Note the comment starting
with the backslash character. Although the comment text is sent to the MCU, it is
ignored. Note, also, the spaces delimiting words. That spaces after the colon and
around the semicolon are important.

• Line 6 is the definition that does the work of fiddling the LED pin. We fetch the
byte from the port B latch, toggle bit 0 and store the resulting byte back into the
port B latch.

5 INTRODUCTORY EXAMPLES 19

• Line 7 defines a word to pause for 500 milliseconds.

• Line 8 defines the “top-level” coordination word, which we have named main, fol-
lowing the C-programming convention. After initializing the relevant hardware, it
unconditionally loops, doing the output operation and waiting, each pass.

• Line 9 invokes the main word and runs the application. Pressing the Reset button
will kill the application and put the MCU back into a state of listening to the serial
port. Typing main, followed by Enter will restart the application.

Instead of going to the bother of tinkering with the MCU IO Port, we could have taken
a short-cut and used the string writing capability of Forth to write a short version that
was closer the the operation of typical Hello World programs.

1 : greet -me ." Hello World" ;

2 greet -me

Before going on to more examples, it is good to know about the word empty. This word
will reset the dictionary and all of the allotted-memory pointers. Because FlashForth does
not allow you to redefine words that are already in the dictionary, later examples that
use the same names for their word definitions, may not compile without complaint if you
don’t clean up after each exercise.

5.2 Flash a LED on the PIC24FV16KM202

1 -flash -led

2 marker -flash -led

3 $02c8 constant trisb

4 $02cc constant latb

5 1 #15 lshift constant bit15

6 : init bit15 trisb mclr ; \ set pin as output

7 : do_output latb @ bit15 xor latb ! ; \ toggle the bit

8 : main init begin do_output #500 ms again ;

9 main

Notes on this program:

• This program for the 16-bit microcontroller is essentially the same as that for the
8-bit MCU, with different addresses for the port-control registers, of course. In
the PIC24/dsPIC30/dsPIC33 version of FlashForth, the special function registers
appear in the lowest 2k bytes of memory.

• On line 5, we compute the bit pattern for selecting the MCU pin rather than writing
it explicitly. We start with a 1 in the least-significant bit of the 16-bit word and
then shift it left 15 places, to produce the binary value %1000000000000000

• On line 7, we use 16-bit fetch @ and store ! operations because the hardware special
function registers on this microcontroller are 16 bits wide.

5 INTRODUCTORY EXAMPLES 20

5.3 Flash a LED on the ATmega328P

1 -flash -led -avr

2 marker -flash -led -avr

3 \ PB5 is Arduino digital pin 13.

4 \ There is a LED attached to this pin on the Freetronics Eleven.

5

6 $0024 constant ddrb

7 $0025 constant portb

8 1 #5 lshift constant bit5

9

10 : init bit5 ddrb mset ; \ set pin as output

11 : do_output portb c@ bit5 xor portb c! ; \ toggle the bit

12 : main init begin do_output #500 ms again ;

13

14 main

Notes on this program:

• Again, except for the specific registers and bits, this program is the same as for the
other MCUs. As for other high-level languages, we no longer have to think about
the specific machine architecture (usually).

• Because we are using load and store instructions, the special function registers start
at address $20.

5.4 Set the cycle duration with a variable

We enhance the initial demonstration by making the waiting period setable. Because of
the interactive FlashForth environment, the extra programming effort required is tiny.
The appearance of the code, however, looks a bit different because we have laid out the
colon definitions in a different style and have included more comments.

1 -flash -led -var

2 marker -flash -led -var

3 \ Flash a LED attached to pin RB0.

4

5 $ff8a constant latb

6 $ff93 constant trisb

7 variable ms_count \ use this for setting wait period.

8

9 : init (--)

10 1 trisb mclr \ want RB0 as output

11 ;

12

13 : do_output (--)

14 latb c@ 1 xor latb c! \ toggle RB0

15 ;

16

17 : wait (--)

18 ms_count @ ms

19 ;

20

21 : main (n --)

22 ms_count ! \ store for later use in wait

23 init

5 INTRODUCTORY EXAMPLES 21

24 begin

25 do_output

26 wait

27 again

28 ;

29

30 #500 main \ exercise the application

Notes on this program:

• If the file has been sent earlier defining the application’s words, line 1 resets the
state of the dictionary to forget those previous definitions. This makes it fairly
convenient to have the source code open in an editing window (say, using emacs)
and to simply reprogram the MCU by resending the file (with the Send file...

button in cutecom).

• Line 7 defines a 16-bit variable ms_count.

• Line 30 leaves the wait period on the stack before invoking the main word.

• On each pass through the wait word, the 16-bit value is fetched from ms_count and
is used to determine the duration of the pause.

5.5 Hello, World: Morse code

Staying with the minimal hardware of just a single LED, we can make a proper “Hello
World” application. The following program makes use of Forth’s colon definitions so that
we can spell the message directly in source code and have the MCU communicate that
message in Morse code.

1 -hello -world

2 marker -hello -world

3 \ Flash a LED attached to pin RB0 , sending a message in Morse -code.

4

5 $ff8a constant latb

6 $ff93 constant trisb

7 variable ms_count \ determines the timing.

8

9 : init (--)

10 1 trisb mclr \ want RB0 as output

11 1 latb mclr \ initial state is off

12 ;

13

14 : led_on 1 latb mset ;

15 : led_off 1 latb mclr ;

16 : gap ms_count @ ms ; \ pause period

17 : gap2 gap gap ;

18 : dit led_on gap led_off gap2 ;

19 : dah led_on gap2 led_off gap2 ;

20

21 \ Have looked up the ARRL CW list for the following letters.

22 : H dit dit dit dit ;

23 : e dit ;

24 : l dit dit ;

25 : o dah dah dah ;

6 READ AND REPORT AN ANALOG VOLTAGE 22

26 : W dit dah dah ;

27 : r dit dah dit ;

28 : d dah dit dit ;

29

30 : greet (--)

31 H e l l o gap W o r l d gap2

32 ;

33

34 : main (n --)

35 ms_count ! \ store for later use in gap

36 init

37 begin

38 greet

39 again

40 ;

41

42 #100 main \ exercise the application

6 Read and report an analog voltage

Use of the analog-to-digital converter (ADC) is a matter of, first, reading Section 17 of
the PIC18F26K22 datasheet, setting the relevant configuration/control registers and then
giving it a poke when we want a measurement. Again, the interactive nature of FlashForth
makes the reporting of the measured data almost trivial.

1 -read -adc

2 marker -read -adc

3 \ Read and report the analog value on RA0/AN0.

4

5 \ Registers of interest on the PIC18F26K22

6 $ffc4 constant adresh

7 $ffc3 constant adresl

8 $ffc2 constant adcon0

9 $ffc1 constant adcon1

10 $ffc0 constant adcon2

11 $ff92 constant trisa

12 $ff38 constant ansela

13

14 : init (--)

15 1 trisa mset \ want RA0 as input

16 1 ansela mset

17 %00000000 adcon1 c! \ ADC references Vdd , Vss

18 %10101111 adcon2 c! \ right -justified , 12-TAD acq -time , FRC

19 %00000001 adcon0 c! \ Power on ADC , looking at AN0

20 ;

21

22 : adc@ (-- u)

23 %10 adcon0 mset \ Start conversion

24 begin %10 adcon0 mtst 0= until \ Wait until DONE

25 adresl @

26 ;

27

28 : wait (--)

29 #500 ms

30 ;

31

32 : main (--)

33 init

34 begin

35 adc@ u.

7 COUNTING BUTTON PRESSES 23

36 wait

37 key? until

38 ;

39

40 \ Exercise the application , writing digitized values periodically

41 \ until any key is pressed.

42 decimal

43 main

Notes on this program:

• Although not much needs to be done to set up the ADC, you really should read the
ADC section of the datasheet to get the full details of this configuration.

• Lines 17 to 19 uses binary literals (with the % character) to show the configuration
bits explicitly.

• Line 24 conditionally repeats testing of the DONE bit for the ADC.

• Line 25 fetches the full 10-bit result and leaves it on the stack for use after the adc@

word has finished. Because of the selected configuration of the ADC peripheral, the
value will be right-justified in the 16-bit cell.

• Line 35 invokes the adc@ word and prints the numeric result.

• Line 37 checks if a character has come in from the serial terminal. If so, the loop is
terminated and the main function returns control to the FlashForth interpreter.

7 Counting button presses

Example of sensing a button press, with debounce in software.

1 \ Use a push -button on RB0 to get user input.

2 \ This button is labelled S3 on the PICDEM2+ board.

3 -pb-demo

4 marker -pb-demo

5

6 $ff81 constant portb

7 $ff8a constant latb

8 $ff93 constant trisb

9

10 variable count

11

12 : init (--)

13 %01 trisb mset \ RB0 as input

14 %10 trisb mclr \ RB1 as output

15 %10 latb mclr

16 ;

17 : RB1toggle (--)

18 latb c@ %10 xor latb c!

19 ;

20 : RB0@ (-- c)

21 portb c@ %01 and

22 ;

23 : button? (-- f)

8 COUNTING BUTTON PRESSES VIA INTERRUPTS 24

24 \ Check for button press , with software debounce.

25 \ With the pull -up in place , a button press will give 0.

26 RB0@ if

27 0

28 else

29 #10 ms

30 RB0@ if 0 else -1 then

31 then

32 ;

33

34 : main (--)

35 0 count !

36 init

37 begin

38 button? if

39 RB1toggle

40 count @ 1+ count !

41 count @ .

42 #200 ms \ allow time to release button

43 then

44 cwd

45 key? until

46 ;

47

48 main \ exercise the application

Notes on this program:

• The main word clears the count variable, calls init to set up the hardware and
then loops, polling RB0 and incrementing value of the count variable only when the
button gets pressed.

• If the pause after acknowledging the button press (line 42) is too long, we may lose
later button press events. This depends on how frantically we press S3.

• Line 44 resets the watch-dog timer on each pass of the main loop. If we don’t press
the RB0 button for a long time, the main loop would not otherwise pause and clear
the watch-dog timer. The watch-dog timer is cleared inside the ms word, however,
if the timer expires before being cleared, the microcontroller would be reset and the
FlashForth interpreter would restart.

8 Counting button presses via interrupts

Instead of polling the RB0 pin attached to the push button, as in the previous example,
let’s set up the hardware interrupt mechanism to invoke the increment action for us.

1 \ Use a push -button on RB0 to get user input , via an interrupt.

2 \ This button is labelled S3 on the PICDEM2+ board.

3 \ Don ’t have J6 connected because the LED on RB0 loads the pull -up.

4

5 -pb-interrupt

6 marker -pb -interrupt

7

8 $ff93 constant trisb

9 $fff2 constant intcon

8 COUNTING BUTTON PRESSES VIA INTERRUPTS 25

10 $fff1 constant intcon2

11

12 variable count

13 variable last -count

14

15 : int0 -irq

16 [i

17 %10 intcon mtst \ INT0IF

18 if

19 count @ 1+ count !

20 %10 intcon mclr

21 then

22 i]

23 ;i

24

25 : init (--)

26 %01 trisb mset \ RB0 as input , a button press will give 0.

27 %01000000 intcon2 mclr \ interrupt on falling edge

28 [’] int0 -irq 0 int! \ install service word

29 %10 intcon mclr \ INT0IF cleared

30 %10000 intcon mset \ INT0 interrupt enable

31 ;

32

33 : main (--)

34 0 count !

35 init

36 begin

37 count @ last -count @ - \ change?

38 if

39 count @ dup last -count ! .

40 then

41 cwd

42 key? until

43 ;

44

45 main \ exercise the application

Notes on this program:

• Again, we use the variable named count as the variable to be incremented on press-
ing the button that pulls RB0 low. The actual increment is done on line 19, inside
the interrupt service word int0-irq. The second variable, last-count, is used on
line 36 in the main word, to detect when the count variable changes.

• The init word sets up the bits to enable the INT0 external interrupt to fire on a
falling edge at RB0.

• On line 28 in the init word, the execution token for our interrupt service word
is stored as the high-priority interrupt vector. Because FlashForth supports only
high-priority interrupts, the 0 is a dummy value but is still expected by the int!

word.

• Inside the interrupt-service word, we need to test the INT0IF interrupt flag to see if
it is our interrupt to handle and, if it is, do the appropriate work (of incrementing
the count variable) and clearing the interrupt flag. If you enable several interrupt
sources, you need to provide a test and action for each.

• The main word clears the count variable, calls init to set up the interrupt mecha-
nism and then loops, emitting the value of the count variable only when it changes.

9 SCANNING A 4X3 MATRIX KEYPAD 26

9 Scanning a 4x3 matrix keypad

We connect a 4x3 matrix keypad to PORTB, using RB0, RB1 and RB2 to drive the
columns while sensing the rows with RB4 through RB7. The schematic figure below
shows the arrangement of keys and pins.

1 2 3

4 5 6

7 8 9

* 0 #

pin 2, RB7

pin 7, RB6

pin 6, RB5

pin 4, RB4

pin 3 1 5
RB0 RB1 RB2

To minimize hardware, we have used the weak pull-ups on PORTB. Pressing a key while
it’s column wire is held high does nothing, however, pressing a key on a column that is
held low will result in its row being pulled low.

1 -keypad

2 marker -keypad

3 \ Display key presses from a 4x3 (telephone -like) keypad

4 \ on PIC18F26K22 -I/SP

5

6 $ff81 constant portb

7 $ff8a constant latb

8 $ff93 constant trisb

9 $ff39 constant anselb

10 $ff61 constant wpub

11 $fff1 constant intcon2

12

13 : init (--)

14 0 latb c!

15 %00000000 anselb c! \ set as all digital I/O pins

16 %11110000 trisb c! \ RB7 -4 as input , RB3 -0 as output

17 %11110000 wpub c! \ pull -ups on RB7 -4

18 %10000000 intcon2 mclr \ turn on pull -ups

19 ;

20

21 flash

22 create key_chars

23 char 1 c, char 2 c, char 3 c,

24 char 4 c, char 5 c, char 6 c,

25 char 7 c, char 8 c, char 9 c,

26 char * c, char 0 c, char # c,

27 create key_scan_bytes

28 $7e c, $7d c, $7b c,

29 $be c, $bd c, $bb c,

30 $de c, $dd c, $db c,

31 $ee c, $ed c, $eb c,

32 ram

33

34 : scan_keys (-- c)

35 \ Return ASCII code of key that is pressed

36 #12 for

37 key_scan_bytes r@ + c@

38 dup

39 latb c!

40 portb c@

41 = if

42 \ key must be pressed to get a match

43 key_chars r@ + c@

44 rdrop

10 USING I2C TO GET TEMPERATURE MEASUREMENTS 27

45 exit

46 then

47 next

48 0 \ no key was pressed

49 ;

50

51 : keypad@ (-- c)

52 \ Read keypad with simple debounce.

53 \ ASCII code is left on stack.

54 \ Zero is returned for no key pressed or inconsistent scans.

55 scan_keys dup

56 #20 ms

57 scan_keys

58 = if exit else drop then

59 0 \ inconsistent scan results

60 ;

61

62 : main (--)

63 init

64 begin

65 keypad@

66 dup

67 0= if

68 drop \ no key pressed

69 else

70 emit

71 #300 ms \ don ’t repeat key too quickly

72 then

73 key? until

74 ;

Notes on this program:

• In lines 21–31, we make use of character arrays to store (into the program memory)
the the ASCII code and the scan code for each key. The scan code is made up of
the 3-bit column pattern to be applied to RB2-RB0 and the resulting 4-bit row-
sense pattern (RB7-RB4) expected for the particular key if it is pressed. RB3 is
maintained high (and is of no consequence) for this 3-column keypad, however, it
would be used for a 4x4 keypad.

• Lines 36 and 47 make use of the for–next control construct to work through the set
of 12 scan codes

• We should go further by making use a state-machine and also keeping track of the
last key pressed.

10 Using I2C to get temperature measurements

Using the MSSP peripheral in master mode, one may talk to the TC74A5 temperature
measurement chip on the PICDEM 2 PLUS and report sensor temperature.

1 \ Read temperature from TC74 on PICDEM2+ board with PIC18F46K22 -I/P.

2 \ Modelled on Mikael Nordman ’s i2c_tcn75.txt.

3 \ This program requires i2c_base.txt to be previously loaded.

4 -read -tc74

11 MAKING HIGH-RESOLUTION VOLTAGE MEASUREMENTS 28

5 marker -read -tc74

6

7 $ff3a constant anselc

8 %1001101 constant addr -tc74 \ default 7-bit address for TC74

9

10 : add -read -bit (7-bit -c -- 8-bit -c)

11 \ Make 8-bit i2c address with bit 0 set.

12 1 lshift 1 or

13 ;

14 : add -write -bit (7-bit -c -- 8-bit -c)

15 \ Make 8-bit i2c address with bit 0 clear.

16 1 lshift 1 invert and

17 ;

18 : sign -extend (c -- n)

19 \ If the TC74 has returned a negative 8-bit value ,

20 \ we need to sign extend to 16-bits with ones.

21 dup $7f > if $ff80 or then

22 ;

23 : init -tc74 (--)

24 \ Selects the temperature register for subsequent reads.

25 addr -tc74 add -write -bit i2cws 0 i2c! spen

26 ;

27 : degrees@ (-- n)

28 \ Wake the TC74 and receive its register value.

29 addr -tc74 add -read -bit i2cws i2c@nak sign -extend

30 ;

31 : main (--)

32 %11000 anselc mclr \ enable digital -in on RC3 ,RC4 (SCL1 ,SDA1)

33 i2cinit

34 init -tc74

35 begin

36 degrees@ .

37 #1000 ms

38 key? until

39 ;

40

41 \ Now , report temperature in degrees C

42 \ while we warm up the TC74 chip with our fingers ...

43 decimal main

With a Saleae Logic Analyser connected to the pins of the TC74A5, we can see the I2C
signals as a result of calling the init-tc74 word.

A little later on, the degrees@ word is invoked. The returned binary value of 0b00010101
corresponds to the very pleasant 21oC that exists in the back shed as this text is being
written.

Notes on this program:

• This builds upon the i2c_base and asm words supplied with FlashForth.

11 Making high-resolution voltage measurements

The Microchip MCP3422 is a Σ∆-ADC that can connected via I2C port. This neat little
converter can measure voltages with a resolution of 18 bits (at the lowest data rate of

11 MAKING HIGH-RESOLUTION VOLTAGE MEASUREMENTS 29

3.75 samples per second) and includes a programmable gain amplifier [9]. Being available
in a surface-mount package only, it was convenient to use a prebuilt evaluation board, the
green board between the home-built FlashForth demo board and the fixed-voltage supply
board. The MCP3422 evaluation board is connected to and powered from the I2C header
on the FlashForth demo board. Separately, the fixed-voltage supply board provides the
measurement voltage to channel 1 of the MCP3422 via a potentiometer that is set to give
1.024 V, according to my (fairly cheap) multimeter.

1 \ mcp3422.txt

2 \ Play with mcp3422 eval board.

3 \ PJ, 21-Oct -2013

4 \ 28-Apr -2014 PIC18F26K22 version

5 \ Needs i2c_base.txt and math.txt.

6

7 -mcp3422

8 marker -mcp3422

9

10 $ff3a constant anselc

11

12 : mcp3422init (--)

13 \ $d0 is default mcp4322 address for writing

14 \ $9c is config for 18-bit continuous conversions of ch 1

15 $d0 i2cws $9c i2c! spen

16 ;

17

18 : mcp3422@ (-- d f) \ Read the 18-bit result as 3 bytes

19 $d1 i2cws i2c@ak \ only 2 bits in first byte

20 dup $3 > if $fffa or then \ sign -extend to full cell

21 i2c@ak $8 lshift i2c@ak or \ next two bytes into one cell

22 swap \ leave double result

23 i2c@nak $80 and 0= \ leave true if result is latest

24 ;

25

26 : microvolts (d1 -- d2)

27 \ The least -significant bit corresponds to 15.625 microvolts

28 #125 #8 m*/

29 ;

30

31 : (d.3) (d --)

32 swap over dabs

33 <# # # # [char] . hold #s rot sign #>

12 AN I2C SLAVE EXAMPLE 30

34 ;

35

36 : report (d f --) \ Assuming decimal , print millivolt value

37 cr if ." new " else ." old " then

38 microvolts (d.3) type space ." mV "

39 ;

40

41 : mcp3422 -run (--)

42 decimal

43 %11000 anselc mclr \ enable digital -in on RC3 ,RC4 (SCL1 ,SDA1)

44 i2cinit mcp3422init

45 begin

46 mcp3422@ report

47 #1000 ms

48 key? until

49 hex

50 ;

Notes on this program:

• mcp3422-run is the top-level word that initializes the hardware, then periodically
reads the MCP3422 data and reports the voltage (in millivolts) to the user terminal.
The program runs until a key is pressed.

• The converted value is read from the MCP3422 as and 18-bit value in 2-complement
format. The word mcp3422@ reads the data as three bytes from the I2C port and
then shuffles it into a double-cell value that is left on the stack, along with a flag to
indicate whether the value sent by the MCP3422 happened to be the latest data.

• The value is scaled to microvolts and then the resultant double value is output using
the pictured numeric output to have 3 decimal places so that it looks like a millivolt
reading. Several lines from the terminal look like the following:

new 1028.031 mV

new 1028.062 mV

new 1028.046 mV

• This program builds upon the i2c_base and asm words supplied with FlashForth,
in order to communicate with the MCP3422. The code for scaling of the measured
data requires words from math.txt.

12 An I2C slave example

The MSSP in the PIC18F26K22 can also be used in slave mode. Here, the FlashForth
demo board is presented as an I2C slave device to an Aardvark serial interface, acting as
master. The UART communication is provided by a Future Technology Devices Interna-
tional USB TTL-serial cable.

12 AN I2C SLAVE EXAMPLE 31

The core of the program is the i2c service word which is invoked each time a serial-port
event is flagged by the SSPIF bit in the PIR1 flag register. This word is an implementation
of the state look-up approach detailed in the Microchip Application Note AN734 [10]. The
rest of the program is there to provide (somewhat) interesting data for the I2C master
to read and to do something (light a LED) when the master writes suitable data to the
slave.

1 -i2c -slave

2 marker -i2c -slave

3 \ Make the FlashForth 26K22 demo board into an I2C slave.

4 \ An I2C master can read and write to a buffer here ,

5 \ the least -significant bit of the first byte controls

6 \ the LED attached to pin RB0.

7 \

8 \ Needs core.txt loaded.

9

10 $ff81 constant portb

11 $ff82 constant portc

12 $ff8a constant latb

13 $ff93 constant trisb

14 $ff94 constant trisc

15 $ff3a constant anselc

16

17 : led_on (--)

18 %00000001 latb mset

19 ;

20 : led_off (--)

21 %00000001 latb mclr

22 ;

23 : err_led_on (--)

24 %00000010 latb mset

25 ;

26 : err_led_off (--)

27 %00000010 latb mclr

28 ;

29

30 \ Establish a couple of buffers in RAM , together with index variables.

31 ram

32 8 constant buflen

33 \ Receive buffer for incoming I2C data.

34 create rbuf buflen allot

35 variable rindx

36 : init_rbuf (--)

37 rbuf buflen erase

38 0 rindx !

39 ;

40 : incr_rindx (--) \ increment with wrap -around

41 rindx @ 1 +

42 dup buflen = if drop 0 then

43 rindx !

44 ;

45 : save_to_rbuf (c --)

46 rbuf rindx @ + c!

47 incr_rindx

48 ;

49

50 \ Send buffer with something interesting for the I2C master to read.

51 create sbuf buflen allot

52 variable sindx

53 : incr_sindx (--) \ increment with wrap -around

54 sindx @ 1 +

55 dup buflen = if drop 0 then

56 sindx !

57 ;

58 : init_sbuf (--) \ fill with counting integers , for interest

59 buflen

60 for

12 AN I2C SLAVE EXAMPLE 32

61 r@ 1+

62 sbuf r@ + c!

63 next

64 0 sindx !

65 ;

66

67 \ I2C -related definitions and code

68 $ffc5 constant sspcon2

69 $ffc6 constant sspcon1

70 $ffc7 constant sspstat

71 $ffc8 constant sspadd

72 $ffc9 constant sspbuf

73 $ff9e constant pir1

74

75 \ PIR1 bits

76 %00001000 constant sspif

77

78 \ SSPSTAT bits

79 %00000001 constant bf

80 %00000100 constant r_nw

81 %00001000 constant start_bit

82 %00010000 constant stop_bit

83 %00100000 constant d_na

84 %01000000 constant cke

85 %10000000 constant smp

86

87 d_na start_bit or r_nw or bf or constant stat_mask

88

89 \ SSPCON1 bits

90 %00010000 constant ckp

91 %00100000 constant sspen

92 %01000000 constant sspov

93 %10000000 constant wcol

94

95 \ SSPCON2 bits

96 %00000001 constant sen

97

98 : i2c_init (--)

99 %11000 anselc mclr \ enable digital -in on RC3 ,RC4 (SCL1 ,SDA1)

100 %00011000 trisc mset \ RC3==SCL RC4==SDA

101 %00000110 sspcon1 c! \ Slave mode with 7-bit address

102 sen sspcon2 mset \ Clock stretching enabled

103 smp sspstat mset \ Slew -rate disabled

104 $52 1 lshift sspadd c! \ Slave address

105 sspen sspcon1 mset \ Enable MSSP peripheral

106 ;

107

108 : release_clock (--)

109 ckp sspcon1 mset

110 ;

111

112 : i2c_service (--)

113 \ Check the state of the I2C peripheral and react.

114 \ See App Note 734 for an explanation of the 5 states.

115 \

116 \ State 1: i2c write operation , last byte was address.

117 \ D_nA=0, S=1, R_nW=0, BF=1

118 sspstat c@ stat_mask and %00001001 =

119 if

120 sspbuf @ drop

121 init_rbuf

122 release_clock

123 exit

124 then

125 \ State 2: i2c write operation , last byte was data.

126 \ D_nA=1, S=1, R_nW=0, BF=1

127 sspstat c@ stat_mask and %00101001 =

128 if

129 sspbuf c@ save_to_rbuf

130 release_clock

131 exit

12 AN I2C SLAVE EXAMPLE 33

132 then

133 \ State 3: i2c read operation , last byte was address.

134 \ D_nA=0, S=1, R_nW=1

135 sspstat c@ %00101100 and %00001100 =

136 if

137 sspbuf c@ drop

138 0 sindx !

139 wcol sspcon1 mclr

140 sbuf sindx @ + c@ sspbuf c!

141 release_clock

142 incr_sindx

143 exit

144 then

145 \ State 4: i2c read operation , last byte was outgoing data.

146 \ D_nA=1, S=1, R_nW=1, BF=0

147 sspstat c@ stat_mask and %00101100 =

148 ckp sspcon1 mtst 0=

149 and

150 if

151 wcol sspcon1 mclr

152 sbuf sindx @ + c@ sspbuf c!

153 release_clock

154 incr_sindx

155 exit

156 then

157 \ State 5: master NACK , slave i2c logic reset.

158 \ From AN734: D_nA=1, S=1, BF=0, CKP=1, however ,

159 \ we use just D_nA=1 and CKP=1, ignoring START bit.

160 \ This is because master may have already asserted STOP

161 \ before we service the final NACK on a read operation.

162 d_na sspstat mtst 0 > ckp sspcon1 mtst 0 > and

163 stop_bit sspstat mtst or

164 if

165 exit \ Nothing needs to be done.

166 then

167 \ We shouldn ’t arrive here ...

168 err_led_on

169 cr ." Error "

170 ." sspstat " sspstat c@ u.

171 ." sspcon1 " sspcon1 c@ u.

172 ." sspcon2 " sspcon2 c@ u.

173 cr

174 begin again \ Hang around until watch -dog resets MCU.

175 ;

176

177

178 : init (--)

179 %00000011 trisb mclr \ want RB0 ,RB1 as output pins

180 init_rbuf

181 init_sbuf

182 i2c_init

183 led_on err_led_on #200 ms led_off err_led_off

184 ;

185

186 : main (--)

187 cr ." Start I2C slave "

188 init

189 begin

190 sspif pir1 mtst

191 if

192 sspif pir1 mclr

193 i2c_service

194 then

195 rbuf c@ %00000001 and

196 if led_on else led_off then

197 cwd

198 key? until

199 ;

200

201 \ ’ main is turnkey

12 AN I2C SLAVE EXAMPLE 34

With a Saleae Logic Analyser connected, we can see the I2C signals as a result of writing
the byte 0x01 to turn on the LED. The following figure shows the data and clock signals
from the time that the master asserts the START condition (green circle) until it asserts
the STOP condition (as indicated by the red square).

The clock frequency is 100kHz and there is a 138µs gap between the ninth clock pulse of
the address byte and the start of the pulses for the data byte. This gives an indication of
the time needed to service each SSPIF event.

A little later on, the Aardvark reads two bytes from the bus, as shown here.

Zooming in, to show the finer annotation, the same signals are shown below.

Again, the inter-byte gap is 138µs resulting in about 200µs needed to transfer each byte.
This effective speed of 5 kbytes/s should be usable for many applications, since the I2C
bus is typically used for low speed data transfer.

Notes on this program:

• Need to load core.txt before the source code of the i2c-slave.txt.

• Slave examples found in documentation on the Web usually have the service function
written in the context of an interrupt service routine. The MSSP can be serviced
quite nicely without resorting to the use of interrupts, however, you still have to
check and clear the SSPIF bit for each event.

• The implementation of the test for State 5 (Master NACK) is slightly different to
that described in AN734 because it was found that the master would assert an I2C
bus stop after the final NACK of a read operation but before the MCU could service
the SSPIF event. This would mean that STOP was the most recent bus condition
seen by the MSSP and the START and STOP bits set to reflect this. In the figures
shown above, there is only about 12µs between the ninth clock pulse for the second
read data byte and the Aardvark master asserting the STOP condition on the bus.
This period is very much shorter than the (approx.) 140µs period needed by the
slave firmware to service the associated SSPIF event.

13 SPEED OF OPERATION 35

13 Speed of operation

All of this nice interaction and convenience has some costs. One cost is the number of
MCU instruction cycles needed to process the Forth words. To visualize this cost, the
following program defines a word blink-forth which toggles an IO pin using the high-
level FlashForth words that fetch and store bit patterns into the port latch register. An
alternative word blink-asm uses assembler instructions to achieve an equivalent effect,
but faster, and a third word blink-bits uses the FlashForth bit0: and bit1: words to
create high-level bit-manipulation words that also achieve full machine speed.

13.1 PIC18F26K22

1 -speed -test

2 marker -speed -test

3 \ Waggle RB1 as quickly as we can , in both high - and low -level code.

4 \ Before sending this file , we should send asm.txt so that we have

5 \ the clrwdt , word available. We also need bit.txt.

6

7 $ff8a constant latb

8 $ff93 constant trisb

9

10 : initRB1

11 %10 trisb mclr \ RB1 as output

12 %10 latb mclr \ initially known state

13 ;

14

15 \ high -level bit fiddling , presumably slow

16 : blink -forth (--)

17 initRB1

18 begin

19 %10 latb c! 0 latb c! \ one cycle , on and off

20 %10 latb c! 0 latb c!

21 %10 latb c! 0 latb c!

22 %10 latb c! 0 latb c!

23 cwd \ We have to kick the watch dog ourselves.

24 again

25 ;

26

27 \ low -level bit fiddling , via assembler

28 : blink -asm (--)

29 initRB1

30 [

31 begin ,

32 latb 1 a, bsf , latb 1 a, bcf , \ one cycle , on and off

33 latb 1 a, bsf , latb 1 a, bcf ,

34 latb 1 a, bsf , latb 1 a, bcf ,

35 latb 1 a, bsf , latb 1 a, bcf ,

36 clrwdt , \ kick the watch dog

37 again ,

38]

39 ;

40

41 \ high -level bit fiddling with named bits

42 latb #1 bit1: RB1 -hi inlined

43 latb #1 bit0: RB1 -lo inlined

44 : blink -bits (--)

45 initRB1

46 begin

47 RB1 -hi RB1 -lo \ one cycle

48 RB1 -hi RB1 -lo

49 RB1 -hi RB1 -lo

50 RB1 -hi RB1 -lo

51 cwd

13 SPEED OF OPERATION 36

52 again

53 ;

Notes on this program:

• We have had to worry about clearing the watch-dog timer. In the early examples,
the FlashForth interpreter was passing through the pause state often enough to keep
the watch-dog happy. The words in this example give the FlashForth interpreter no
time to pause so we are responsible for clearing the watch-dog timer explicitly.

• In the source code config file for the specific MCU, the watch-dog timer postscale is
set to 32768. With a 31.25 kHz oscillator frequency, this leads to a default timeout
period of a little over 134 seconds (3.2 ms× 128× 32768).

• For the PIC18 MCU, the internal oscillator of 16 MHz was multiplied by the PLL
to get 64 MHz oscillator driving the MCU. With 4 clock cycles per instruction cy-
cle, this gave an instruction period TCY = 62.5 ns. Current consumption by the
microcontroller was about 13 mA.

• The screen image on the left shows the output signal for running the high-level
blink-forth word while the image on the right uses the assembler words.

• For the blink-forth word, one on+off cycle of the LED executes in 6 words and
is seen (in the oscilloscope record) to require about 50 instruction cycles. So, on
average, each of these threaded Forth words is executed in about 8 MCU instruc-
tion cycles. Note that this overhead includes the cost of using 16-bit cells for the
data. Extra machine instructions are used to handle the upper bytes. In other
applications, where we actually want to handle 16-bit data, this will no longer be a
penalty.

• The assembler version has no overhead and the cycle time for the MCU instructions
defines the period of the output signal. One on-off cycle requires 2 instructions so
we see a short 125 ns period. This is fast enough that the capacitive loading on the
output pin is noticeable in the oscilloscope trace. Also, the time required for the
machine instructions to clear the watch-dog timer and the instruction jump back to
the start of the loop now shows up clearly in the oscilloscope record.

13 SPEED OF OPERATION 37

• The oscilloscope record for the blink-bits word is shown here.

With the newly created bit-manipulation words RB1-hi and RB1-lo being inlined,
they also achieve full machine speed because the generated code is essentially the
same as for blink-asm.

13.2 PIC24FV16KM202

1 -speed -test

2 marker -speed -test

3 \ For the PIC24FV16KM202 , waggle RB15 as quickly as we can ,

4 \ in both high - and low -level code.

5 \ Remember to load bit.txt before this file.

6

7 $02c8 constant trisb

8 $02ca constant portb

9 $02cc constant latb

10 $02ce constant odcb

11

12 1 #15 lshift constant bit15

13

14 : initRB15

15 bit15 trisb mclr \ RB15 as output

16 bit15 latb mclr \ initially known state

17 ;

18

19 \ high -level bit fiddling , presumably slow

20 : blink -forth (--)

21 initRB15

22 begin

23 bit15 latb ! 0 latb ! \ one cycle , on and off

24 bit15 latb ! 0 latb !

25 bit15 latb ! 0 latb !

26 bit15 latb ! 0 latb !

27 cwd \ We have to kick the watch dog ourselves.

28 again

29 ;

30

31 \ low -level bit fiddling , via assembler

32 : blink -asm (--)

33 initRB15

34 [

35 begin ,

36 #15 latb bset , #15 latb bclr , \ one cycle , on and off

37 #15 latb bset , #15 latb bclr ,

38 #15 latb bset , #15 latb bclr ,

39 #15 latb bset , #15 latb bclr ,

13 SPEED OF OPERATION 38

40] cwd [\ kick the watch dog

41 again ,

42]

43 ;

44

45 \ high -level bit fiddling with named bits

46 latb #15 bit1: RB15 -hi inlined

47 latb #15 bit0: RB15 -lo inlined

48 : blink -bits (--)

49 initRB15

50 begin

51 RB15 -hi RB15 -lo \ one cycle

52 RB15 -hi RB15 -lo

53 RB15 -hi RB15 -lo

54 RB15 -hi RB15 -lo

55 cwd

56 again

57 ;

Notes on this program:

• The order of the assembler arguments is bit-number register-address op-code. This
is different to that seen in the PIC18 version of the program.

• The MCU was configured for running off its internal 8 MHz oscillator with a 1:1
postscaling. This resulted in an instruction cycle period TCY = 250 ns. Although
this is 4 times longer than for the PIC18, the current consumption was correspond-
ingly lower at about 3 mA.

• The screen image on the left shows the output signal for running the high-level
blink-forth word while the image on the right uses the assembler words.

• For the blink-forth word, one on+off cycle of the LED executes in 6 words and
is seen (in the oscilloscope record) to require about 41 instruction cycles. So, on
average, each of these threaded Forth words is executed by the 16-bit PIC24 in
about 7 MCU instruction cycles.

• The assembler version has no overhead and the cycle time for the MCU instructions
defines the period of the output signal. One on-off cycle requires 2 instructions so
we see a short 500 ns period.

• The oscilloscope record for the blink-bits word is shown here.

13 SPEED OF OPERATION 39

Again, the newly created bit-manipulation words RB15-hi and RB15-lo also achieve
full machine speed.

13.3 ATmega328P

1 -speed -test

2 marker -speed -test

3 \ Waggle PB5 as quickly as we can , in both high - and low -level code.

4 \ Before sending this file , we should send asm.txt , bit.txt and bio.txt.

5

6 $0024 constant ddrb

7 $0025 constant portb \ RAM address

8 $0005 constant portb -io \ IO -space address

9 1 #5 lshift constant bit5

10

11 : initPB5

12 bit5 ddrb mset \ set pin as output

13 bit5 portb mclr \ initially known state

14 ;

15

16 : cwd (--) [wdr ,] ; inlined \ we might want to reset the watchdog

17

18 \ high -level bit fiddling , presumably slow

19 : blink -forth (--)

20 initPB5

21 begin

22 bit5 portb c! 0 portb c! \ one cycle , on and off

23 bit5 portb c! 0 portb c!

24 bit5 portb c! 0 portb c!

25 bit5 portb c! 0 portb c!

26 cwd

27 again

28 ;

29

30 \ low -level bit fiddling , via assembler

31 : blink -asm (--)

32 initPB5

33 [

34 begin ,

35 portb -io #5 sbi , portb -io #5 cbi , \ one cycle , on and off

36 portb -io #5 sbi , portb -io #5 cbi ,

37 portb -io #5 sbi , portb -io #5 cbi ,

38 portb -io #5 sbi , portb -io #5 cbi ,

39 wdr ,

40 again ,

41]

42 ;

43

44 \ high -level bit fiddling with named bits

13 SPEED OF OPERATION 40

45 portb #5 bit1: PB5 -hi inlined

46 portb #5 bit0: PB5 -lo inlined

47 : blink -bits (--)

48 initPB5

49 begin

50 PB5 -hi PB5 -lo \ one cycle

51 PB5 -hi PB5 -lo

52 PB5 -hi PB5 -lo

53 PB5 -hi PB5 -lo

54 cwd

55 again

56 ;

57

58 \ high -level bit fiddling with named bits in IO-space

59 portb -io #5 bio1: PB5io -hi inlined

60 portb -io #5 bio0: PB5io -lo inlined

61 : blink -bits -io (--)

62 initPB5

63 begin

64 PB5io -hi PB5io -lo \ one cycle

65 PB5io -hi PB5io -lo

66 PB5io -hi PB5io -lo

67 PB5io -hi PB5io -lo

68 cwd

69 again

70 ;

Notes on this program:

• Except for names, this code is essentially the same as for the PIC18 and PIC24
versions of the exercise. FlashForth abstracts away much of the instruction-set
architecture of the microcontroller, leaving us to focus on twiddling the bits of the
peripheral hardware.

• The MCU was configured for running with the 16 MHz crystal, which resulted in a
machine clock cycle period TCY = 62.5 ns.

• The screen image on the left shows the output signal for running the high-level
blink-forth word while the image on the right uses the assembler words.

• For the blink-forth, one on+off cycle of the LED executes in 6 words and is seen
(in the oscilloscope record) to require about 87 instruction cycles. So, on average,
each of these threaded Forth words is executed by the 16-bit PIC24 in about 14.5
MCU clock cycles.

13 SPEED OF OPERATION 41

• The assembler version has no overhead and the cycle time for the MCU instructions
defines the period of the output signal. One on-off cycle requires 2 instructions (sbi
and cbi) each requiring 2 clock cycles, so we see a short 250 ns period.

• The oscilloscope records for the blink-bits and blink-bits-io words are shown
here.

The left screen image shows the pin signal when accessing the bit via memory-space
address. Here the pulse width was about 620 ns so each of the 2 words required
about 5 MCU clock cycles. Although faster than the threaded words, this is not
quite the full machine speed which is available when accessing the bit via IO-space
address (right screen image).

14 DRIVING AN HITACHI-44780 LCD CONTROLLER 42

14 Driving an Hitachi-44780 LCD controller

The LCD in the photograph on page 6 was driven with the following code. During the
development of this example, a lesson was relearned – that of reading the data sheet [11]
carefully :)

1 \ Exercise LCD on PICDEM2+ board.

2 \ Remember to load bit.txt before this file.

3 -xlcd

4 marker -xlcd

5

6 $ff80 constant porta

7 $ff89 constant lata

8 $ff92 constant trisa

9 $ff83 constant portd

10 $ff8c constant latd

11 $ff95 constant trisd

12

13 \ The LCD is operated in nibble mode.

14 \ RA1 = Enable (E) pin

15 \ RA2 = Read/Write (RW) pin

16 \ RA3 = Register Select (RS) pin

17 \ RD0 = DB4 on LCD

18 \ RD1 = DB5

19 \ RD2 = DB6

20 \ RD3 = DB7

21

22 portd constant dataport

23 lata #1 bit0: Elo

24 lata #1 bit1: Ehi

25 lata #2 bit0: RWlo

26 lata #2 bit1: RWhi

27 lata #3 bit0: RSlo

28 lata #3 bit1: RShi

29

30 : data -port -in (--)

31 trisd c@ $0f or trisd c!

32 ;

33

34 : data -port -out (--)

35 trisd c@ $f0 and trisd c!

36 ;

37

38 : put -nibble (c --)

39 \ Make lower 4 bits of c appear on data port pins.

40 $0f and

41 dataport c@ $f0 and

42 or

43 dataport c!

44 ;

45

46 : short -delay (--)

47 18 for r@ drop next ;

48

49 : Estrobe (--)

50 Ehi short -delay Elo

51 ;

52

53 : lcd -getc (-- c)

54 \ Read the LCD register in two nibbles.

55 \ Remember to select the register line before calling this word.

56 data -port -in

57 RWhi short -delay

58 Ehi short -delay dataport c@ #4 lshift Elo short -delay \ high nibble

59 Ehi short -delay dataport c@ Elo short -delay \ low nibble

60 or \ assemble full byte and leave it on the stack

61 RWlo short -delay

62 ;

14 DRIVING AN HITACHI-44780 LCD CONTROLLER 43

63

64 : lcd -ready? (-- f)

65 \ Read the command register and check busy bit.

66 RSlo short -delay

67 lcd -getc $80 and 0=

68 ;

69

70 : wait -for -lcd (--)

71 begin lcd -ready? cwd until

72 ;

73

74 : lcd -putc (c --)

75 \ Write the LCD register in two nibbles.

76 \ Remember to select the register line before calling this word.

77 dup $f0 and #4 rshift \ high nibble left on top of stack

78 data -port -out

79 RWlo short -delay

80 put -nibble short -delay Estrobe short -delay

81 $0f and \ low nibble now left on top of stack

82 put -nibble short -delay Estrobe short -delay

83 data -port -in

84 ;

85

86 : lcd -clear (--)

87 wait -for -lcd

88 RSlo short -delay

89 %00000001 lcd -putc

90 ;

91

92 : lcd -home (--)

93 wait -for -lcd

94 RSlo short -delay

95 %00000010 lcd -putc

96 ;

97

98 : lcd -goto (c --)

99 \ Set the specified 7-bit data memory address.

100 wait -for -lcd

101 RSlo short -delay

102 $80 or \ sets the highest bit for the command

103 lcd -putc

104 ;

105

106 : lcd -init (--)

107 data -port -in

108 Elo RWlo RSlo

109 %00001110 trisa mclr \ RS, RW and E as output

110 30 ms \ power -on delay

111 \ Begin "initialization by instruction"

112 \ Presumably , the LCD is in 8-bit interface mode.

113 %0011 put -nibble Estrobe 5 ms

114 %0011 put -nibble Estrobe 1 ms

115 %0011 put -nibble Estrobe 1 ms

116 \ Function set for 4-bit interface; it is still in 8-bit mode.

117 %0010 put -nibble Estrobe 1 ms

118 \ Now , we should be in 4-bit interface mode.

119 \ Function set for 4-bit interface , 2 display lines 5x7 font.

120 wait -for -lcd

121 %00101000 lcd -putc

122 \ Increment cursor after each byte , don ’t shift display.

123 wait -for -lcd

124 %00000110 lcd -putc

125 \ Display off

126 wait -for -lcd

127 %00001000 lcd -putc

128 \ Display clear

129 %00000001 lcd -putc

130 5 ms

131 \ End of "initialization by instruction"

132 \ Enable cursor and display , no blink.

133 wait -for -lcd

14 DRIVING AN HITACHI-44780 LCD CONTROLLER 44

134 %00001110 lcd -putc 1 ms

135 wait -for -lcd

136 ;

137

138 : lcd -emit (c --) \ Write the byte into data memory.

139 wait -for -lcd

140 RShi short -delay

141 lcd -putc

142 ;

143

144 : lcd -type (c-addr n --) \ send string

145 for c@+ lcd -emit next

146 drop

147 ;

148

149 : main

150 ." Begin ..."

151 lcd -init

152 cr ." lcd -init done."

153 s" Hello from" lcd -type

154 $40 lcd -goto

155 s" FlashForth 5.0" lcd -type

156 cr ." exercise done."

157 ;

REFERENCES 45

References

[1] Mikael Nordman. FLASHFORTH for the Microchip PIC 18, 24, 30, 33 se-
ries and Atmel Atmega (Arduino) series. URL http://flashforth.sourceforge.net,
http://personal.inet.fi/private/oh2aun, 2014.

[2] Microchip Technology Inc. PIC18(L)F2X/4XK22 data sheet 28/40/44-pin, low-
power, high-performance microcontrollers with XLP technology. Datasheet
DS41412F, Microchip Technology Inc., www.microchip.com, 2012.

[3] Microchip Technology Inc. PIC24FV16KM204 FAMILY general purpose, 16-bit flash
microcontrollers with XLP technology data sheet. Datasheet DS30003030B, Mi-
crochip Technology Inc., www.microchip.com, 2013.

[4] Atmel. Atmel 8-bit Microcontroller with 4/8/16/32KBytes In-System Programmable
Flash ATmega48A; ATmega48PA; ATmega88A; ATmega88PA; ATmega168A;
ATmega168PA; ATmega328; ATmega328P. Datasheet 8271GAVR02/2013,
www.atmel.com, 2013.

[5] L. Brodie and Forth Inc. Starting Forth: An introduction to the Forth Language and
operating system for beginners and professionals, 2nd Ed. Prentice Hall, Englewood
Cliffs, New Jersey, 1987.

[6] S. Pelc. Programming Forth. Microprocessor Engineering Limited, 2011.

[7] E. K. Conklin and E. D. Rather. Forth Programmer’s Handbook, 3rd Ed. Forth Inc.,
California, 2007.

[8] Peter Jacobs, Peter Zawasky, and Mikael Nordman. Elements of FlashForth. School
of Mechanical and Mining Engineering Technical Report 2013/08, The University of
Queensland, Brisbane, May 2013.

[9] Microchip Technology Inc. MCP3422/3/4: 18-bit, multi-channel ∆Σ analog-to-
digital converter with I2C interface and on-board reference. Technical Report
DS22088C, Microchip Technology Inc., www.microchip.com, 2009.

[10] S. Bowling and N. Raj. Using the PIC devices SSP and MSSP modules for slave I2C
communication. Application Note AN734, Microchip Technology Inc., 2008.

[11] Hitachi. HD44780U (LCD-II) (Dot Matrix Liquid Crystal Display Controller/Driver).
Datasheet ADE-207-272(Z) ’99.9 Rev. 0.0, Hitachi., 1999.

	A selection of microcontrollers
	Development boards
	PIC18 family boards
	AVR and PIC24 boards

	FlashForth
	Getting FlashForth and programming the MCU
	Building for the PIC18F26K22 or PIC18F46K22
	Building for the PIC24FV16KM202
	Building for the ATmega328P

	Interacting with FlashForth
	Introductory examples
	Hello, World: Flash a LED on the PIC18F26K22
	Flash a LED on the PIC24FV16KM202
	Flash a LED on the ATmega328P
	Set the cycle duration with a variable
	Hello, World: Morse code

	Read and report an analog voltage
	Counting button presses
	Counting button presses via interrupts
	Scanning a 4x3 matrix keypad
	Using I2C to get temperature measurements
	Making high-resolution voltage measurements
	An I2C slave example
	Speed of operation
	PIC18F26K22
	PIC24FV16KM202
	ATmega328P

	Driving an Hitachi-44780 LCD controller

