V2_OS Remake: Ideas and discussion

Version 1.0

Presented by Dave Poirier

futur@mad.scientist.com
Disclaimer

This document is not presenting a fixed model of the futur V2_OS kernel. It is to present ideas and suggestions of kernel functionalities and features.

Introduction

Every operating system is evolving with time, adding features, removing bugs, optimizing some parts of the code, etc. Once in a while, when too many features need to be modified, or when the code begin to be too clustered or too fuzy to work with, a major rewrite is needed.

Many ideas have been suggested in order to improve V2_OS functionality and speed. A few of the major criticized areas are the memory management, the keyboard handling, the calling architecture, extensibility, file system support.

As you probably know, many of those features if changed, may affect major part of the kernel or related modules. With those suggestions, came the idea of a rewrite of the system.

This document is here to present some ideas, both my own and the internet community. The goal of this document is to suggest that a rewrite might in fact be necessary in order to achieve the best development curve possible for V2_OS.

Note that the order in which ideas are suggested are in no way representative of the importance of the idea suggested. If you feel that an idea is incomplete, please e-mail me and I’ll make the necessary modifications.

The most recent version of this document may be acquired online at:

http://ekspace.isuisse.com/ekspace/remake/remake.doc
Table of Content

1.
Suggestions and ideas

1.1
I3fs, a new 64bit file system

1.2
Improved memory management

1.3
Including the GUI inside the kernel

1.4
Making V2_OS a gaming console

1.5
Replacing interrupt 20h by a ‘call’ system

2. Considering a rewrite, aspect involved

1. Suggestions and ideas

1.1 I3fs, a new 64bit file system

Most of you must have heard of a new file system being design for V2_OS. Originally designed by Vulture, helped by LTH, this file system is promising us speed, space saving and the ability to better manage the allocation of sectors on disk.

Based on a 64bit internal structure, using hash table, I3fs present many novel ideas that may make it a prized file system for the incoming years. Details are available on the internet on LTH website or by contacting people in the #v2os channel on IRC.

Changing the basic file system supported by an operating system mean that all the file i/o routines must be rewriten, tools to read/write from the disk or partition from other operating system be written, and applications modified to support the new file system. While most people agree that the current file system, V2_FS, does not provides all the required features of a long lasting file system, the issue, of making another file system default, is an important one.

It is important that the file system selected meet as many people’s goal as possible and so, I please ask you to give us your sincere opinion on the file system you would like to see implemented.

1.2 Improved memory management

Memory management under V2_OS has always been of the most simplistic form. A single pointer indicating the top of the allocated memory, going only up, never down. While this prove sufficient to begin the development of an operating system, it is clear that we cannot continue for long using such a memory manager.

I’ve been working for some time now on specification to a new memory manager. I’ve got a lot of different opinions on what should be done or not done by the kernel memory manager. The conclusions of these research may be read on my website in the V2_OS memory management section. The model is quite vaguely described, but at least margin has been fixed, I’m now waiting for your suggestions to fill the blanks.

1.3 Including the GUI inside the kernel

The apparition of RockHard2K brang the idea of including the GUI directly inside the kernel. This idea is quite appealing in a way, it would provide a much faster graphical interface and probably a more solid and stable graphical system

And the other hand, such a system is also presenting drawbacks. Including the GUI inside the kernel is forcing user to use this specific GUI, to the profit of other designed GUI. It is also forcing user to use graphical mode, when some of you may still want to use text mode.

The issue is now yours to decide, include or not a GUI inside the kernel, making it more stable and faster, or keeping the operating system extensible and available in both text and graphic mode. Again, send us your comments or suggestions, makes your ideas travel..

1.4 Making V2_OS a gaming console

V2_OS was originally aimed at multimedia applications and games. Its an open architecture for demanding software such as games, cad tools, 3d renderer, movie/music encoders/decoders.

Daboy suggested that we should include a 3D engine directly inside the kernel like the gaming console do. This 3D engine could be used by games and renderers, and could also provide the engine for a 3D GUI.

Including a 3D engine inside the kernel would certainly bring V2_OS to the attention of the game developper like IDSoftware, Nintendo, Sega, Microsoft and many others. It would certainly attract some attention from the multimedia and CAD industries.

This also bring some drawback, what about games who would like to include their own 3D engine ? What about all the different systems and configuration ? How are we going to make a 3D engine that is fast for both 80386 and fully optimized for Pentium, Pentium Pro, Pentium II, Pentium III, AMD K6, AMD K6-2 and AMD K7 ? Does this mean that we won’t be supporting the 80386 and 80486 computers anymore ?

The choice is yours, the suggestions and ideas are to be shared, or we might miss a big opportunity, or go directly to our doom..

1.5 Replacing interrupt 20h by a ‘call’ system

Some discussion in the #v2os channel was about a ‘call’ system that could replace interrupt 20h of V2_OS. It was said that many operating system nowadays use this type of service calling features since it is faster than calling an interrupt.

Basically, the idea is to make the current service of V2_OS directly callable, so that application can directly call the service they desire. A globally accessible redirection map would be available, application would look into that table and call the desired service. It could also be done so that the application call a redirector function, and this redirector would call the desired service, avoiding the need for application to look themselves inside the redirection table.

Replacing the interrupt 20h by a system of ‘call’ would require a major update of the kernel, since the whole kernel is re-entrant. Every piece of code that was previously calling an interrupt, would now have to conform to the calling convention established. It would also imply that all written application and module be rewritten.

Modifying the interaction path between application and operating system is major issue. It is most likely that this feature will be implemented, but there’s still place for suggestions about how to do it.

2. Considering a rewrite, aspects involved

As you’ve seen, many ideas have been suggested, each and single one of them meaning major modifications to the current kernel. The question is, does a complete rewrite of the whole system be better than modifying the current kernel ?

Rewriting the whole system means that we could clean the code, optimize it with all known and recently learnt ideas, re-arrange service allocation, implement one or more of the desired ideas directly and thus, making the code more integrated, more stable.

Rewriting the whole system also means that all applications, modules and servers must be rewritten. Programmers must be informed of changes, documentation must be updated.

Modifying heavily the current kernel means that we could keep many of the current features and table, the way the system work and all. It is true that we can also do that when rewriting the whole system, but it is certainly easy to keep things the same when simply modifying a source.

In both way, major modifications will ask the applications, modules and server to be modified to the new architecture. A single major modification of the whole kernel might prevent people and developer from being discouraged of always remodifying their sources, but it might also discourage them from modifying them at all, due to the overhelming quantity of change that could be apported.

Personally, I think a major rewrite is needed. The source code is stable yes, but it is badly commented, many parts need to be rewritten, a lot of changes are coming, and a rewrite would certainly provide the best possible occasion to completely optimize and tune up the system. Applications, modules and server need to be rewritten or modified anyway, so why not building a new system, based on the good sides of the current version of V2_OS, and the novels ideas that have been presented.

The thing is, I’m not the only one developing the system, and I don’t plan on taking over the whole development of it either. V2_OS have reached the level attained because it is a community project and because people share ideas and dreams. Ideas and dreams people, that’s what feed the V2_OS community, and that’s what we need now, your ideas, your suggestions, your comments on how you would like to see your V2_OS evolve and become the next operating system to be distributed all over the world..

Please take time to analyze all the possibilities, all the options, come and ask questions, ask for details, provide us with some, ask if you could do something to help, do anything you want, but we need your input, we need your feedback, we need to know what our community really want!

IRC: #v2os on EFnet

1

