Memory Manager for V2_OS

Pre-Final Specification 1.0

Presented by Dave Poirier

futur@mad.scientist.com
Disclaimer

This document is a working draft. If any differences between this document and the implementation is found, the implementation documentation should be considered as the valid one. This document may be copied as long as it is available for free or at the minimum charge required to cover the reproduction fee.

Introduction

Memory management under V2_OS is currently, on this june 2000, at a pre-historic age. It provides no real support for dynamic memory allocation, doesn’t check for upper memory limit and is quite restrictive. There’s also memory wasted since the operating system does not keep track of base memory allocated.

This document present a functional model of memory management that will be implemented in one of the incoming version of V2_OS. In this document, I try to enphase more on the architecture, the general ideas and services than the implementation itself. This document does not present how to call the defined service, nor will it tell you how to pass parameters. For those details, please consult the V2_OS documentation concerning the release with which you are working.

The most recent version of this document may be downloaded online at http://ekspace.isuisse.com/ekspace/mem/specs.doc
Table Of Content

Approach to an open architecture

A dual mode memory management

Basic services

Extending management to include virtual memory

Approach to an open architecture

Since the first steps of the conception of V2_OS, it was clear that the system was heading toward an open architecture, where the application may have total control, but without being alone and helpless. The memory manager should then continue in the same direction.

V2_OS with its many extended features, provide the possibility to application to call RealMode interrupt and access RealMode data or code segment. Support for base memory should then be possible, and as been taken into account while designing the memory manager.

A better control over which part of the memory is accessible, support for memory hole, has also been included. This include a memory mapping session, done in cooperation with bios upon startup.

A dual mode memory management

Experience developping applications and tools for V2_OS revealed that having the possibility to request block of RealMode memory would be helpfull. In fact, many application are forced to use the DiskBuffer of V2_OS to transfer block of information to and from RealMode interrupts.

It is important also not to map base and extended memory with the same map. When using RealMode bios interrupt, the only memory accessible is the based memory, it is therefore critical to leave this space available as much as possible for application to use during those calls or interrupts.

In theory, when an application start, it is allocated some memory. This memory does not need to be localized in either base nor extended memory, in fact, it doesn’t matter since it is mapped anyway via the GDT. In practice, because we have a very restricted quantity of base memory, the application should always be loaded in extended memory, leaving base memory free for application or modules personnal use.

In order to implement this system, the kernel memory manager has been splitted into part. One managing RealMode or base memory, the other managing ProtectedMode or extended memory. Note that both offer approximately the same services, and all services must be called from ProtectedMode only.

Basic services

The basic services described in this section should be available under any type of memory management developed for V2_OS. The memory manager implemented may offer extended, non-described here, services but should at least support these functions:

· FreeProtectedModeMemory()

Free an allocated base memory block, this memory block will then be available for other applications or modules to request.

· FreeRealModeMemory()

Free an allocated extended memory block, this memory block will then be available for other applications or modules to request.

· GetProtectedModeMemory()

Request a memory block in extended memory. This memory block will be assigned to the requesting application or module and will not be available for other applications or modules until it is released. (note: no protection offered)

· GetProtectedModeMemoryStatus()

Return the total quantity of extended memory installed, used and free. It also return the largest continuous block size available.

· GetRealModeMemory()

Request a memory block in base memory. This memory block will be assigned to the requesting application or module and will not be available for other applications or modules until it is released (note: no protection offered)

· GetRealModeMemoryStatus()

Return the total quantity of base memory available and the size of the largest continuous block of memory available.

Extending management to include virtual memory

One of the most widely used feature in operating system today is virtual memory, which gives the application the ability to request more memory than there’s currently installed. While this feature is quite usefull in many application, it is not always needed for highly optimized system that would prefer to do this task themselves.

The memory manager implemented inside the kernel will not support virtual, or paged, memory. If an application or module would like to support paged memory, it will either have to manage it itself or activate a virtual memory manager.

The open architecture of V2_OS makes it easy for a module or an application to take over the memory management. Please consult the V2_OS Kernel manual for more details about how to replace current services.

1

